- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Ahmed, Fiaz (1)
-
Duan, Suqin Q (1)
-
Duan, Suqin Q. (1)
-
Findell, Kirsten L. (1)
-
Neelin, J David (1)
-
Wright, Jonathon S. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Moist heatwaves in the tropics and subtropics pose substantial risks to society, yet the dynamics governing their intensity are not fully understood. The onset of deep convection arising from hot, moist near-surface air has been thought to limit the magnitude of moist heatwaves. Here we use reanalysis data, output from the Coupled Model Intercomparison Project Phase 6 and model entrainment perturbation experiments to show that entrainment of unsaturated air in the lower-free troposphere (roughly 1–3 km above the surface) limits deep convection, thereby allowing much higher near-surface moist heat. Regions with large-scale subsidence and a dry lower-free troposphere, such as coastal areas adjacent to hot and arid land, are thus particularly susceptible to moist heatwaves. Even in convective regions such as the northern Indian Plain, Southeast Asia and interior South America, the lower-free tropospheric dryness strongly afects the maximum surface wet-bulb temperature. As the climate warms, the dryness (relative to saturation) of the lower-free tropospheric air increases and this allows for a larger increase of extreme moist heat, further elevating the likelihood of moist heatwaves.more » « less
-
Duan, Suqin Q.; Findell, Kirsten L.; Wright, Jonathon S. (, Geophysical Research Letters)Abstract Climate model simulations project different regimes of summertime temperature distribution changes under a quadrupling of CO2for dry land, moist land, and oceanic surfaces. The entire temperature distribution shifts over dry land surfaces, while moist land surfaces feature an elongated upper tail of the distribution, with extremes increasing more than the corresponding means by ∼20% of the global mean warming. Oceanic surfaces show weaker warming relative to land surfaces, with no significant elongation of the upper tail. Dry land surfaces show little change in turbulent sensible (SH) or latent (LH) fluxes, with new balance reached with compensating adjustments among downwelling and upwelling radiative fluxes. By contrast, moist land surfaces show enhanced partitioning of turbulent flux toward SH, while oceanic surfaces show enhanced partitioning toward LH. Amplified warming of extreme temperatures over moist land surfaces is attributed to suppressed evapotranspiration and larger Bowen ratios.more » « less
An official website of the United States government
